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Abstract
The control of the onset of convection in a horizontal fluid layer with internal heat generation is studied. The horizontal
boundaries of the system are cooled isothermally. The stability of the fluid layer is investigated on the basis of the linear
stability theory and the resulting eigenvalues problem is solved numerically. Upon using a feedback proportional control,
the heating power of the system is modulated in order to counteract any deviations of the temperature of the fluid from its
conductive value. As a result, it is possible to postpone (or advance) significantly the onset of motion. The optimal positions
of the thermal sensors can be predicted on the basis of the linear stability theory. The linear stability analysis also reveals the
possible existence of Hopf’s bifurcations at the onset of motion. This type of bifurcation can be delayed using differential
controllers. Two-dimensional numerical simulations of the full governing equations are carried out and found to agree well
with the prediction of the linear stability theory.

Keywords Natural convection · Internal heat generation · Feedback control · Stability analysis

Nomenclature
A aspect ratio of the cavity
a wave number
Cp specific heat at constant pressure of the fluid,

J/(kgK)

D differential operator, d/dy

E′ electric field magnitude, V/m

�g gravitational acceleration, m/s2

G′ proportional controller’s gain, s−1

Gt differential controller’s gain
k thermal conductivity, W/(m.K)

L′ height of fluid layer, m
P ′ pressure in the fluid layer, N/m2

Pr Prandtl number, ν/α

q̇ ′ specific heating power, K/s
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q̇ ′
E constant part of specific heating power, K/s

q̇ ′
A part of specific heating power supplied by the

actuator, K/s

r ratio between the controlled and uncontrolled
critical Rayleigh number

Ra Rayleigh number, gβ ′q̇ ′
EL′5/να2

Rac critical Rayleigh number
t ′ time, s
T ′ temperature in the fluid layer, K
�V ′ velocity vector in fluid layer, m/s

x′ horizontal coordinate in fluid layer, m
y′ vertical coordinate in fluid layer, m
y′
s vertical position of the temperature sensor, m

Greek symbols
α thermal diffusivity of the fluid, m2/s

β thermal expansion coefficient, K−1

μ dynamic viscosity of fluid, Ns/m2

υ kinematic viscosity of fluid, m2/s

ρ density of fluid, kg/m3

σ electric conductivity, �−1m−1

Subscript
c critical condition
r reference state
0 value at y = 0
1 value at y = 1
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Superscript
′ refers to dimensional variable

Introduction

Natural convection heat transfer in a plane horizontal layer
subject to an adverse vertical temperature gradient has been
a major topic of research in recent years. The interest is
justified by its many applications such as meteorology,
geophysics, astrophysics as well as in material processing
technology in industrial applications. Since the pioneering
works of Bénard (1900) and Rayleigh (1916) this flow
configuration has been the object of numerous studies. A
large cross section of fundamental research on this topic has
been reviewed by Getling (1998).

Since convective flows are undesirable in many practical
applications active suppression of onset of convection has
potentially important applications in improving the material
that goes through solidification in a mould. For instance,
suppression or delay of onset of motion is desirable during
Czochralski crystal growth (Muller 1988) in order to avoid
inhomogeneities of dopants caused by convection during the
growth process. One way to damp convective motions is the
generation of a Lorentz force by applying a magnetic field
in an electrically conducting fluid. It was demonstrated by
Chandrasekhar (1961) that the effect of the Lorentz force, on
the onset of motion in a horizontal layer heated from below,
is to increase the value of the critical Rayleigh number and
thus to have a stabilizing effect on the layer. The retardation
effect of a magnetic field on the onset of Marangoni convection
in a fluid layer with an upper free boundary was investigated
first by Nield (1966). This study was extended by Maekawa
and Tanasawa (1988) to consider the effect of orientation of
the magnetic field. The influence of a vertical magnetic field
on the onset of steady or oscillatory Marangoni convection
was studied by Wilson (1993, 1994). Although these studies
demonstrate the possibility for a magnetic field, to alter the
stability characteristics in Rayleigh Bénard situations it is
clear that this approach is only applicable to electrically
conducting fluids. Another way to suppress convection is to
take advantage of the weightless environment to reduce these
motions (Delucas et al. 2002). However, the major handi-
caps of this technique are the scarcity of microgravity time
and the cost.

Another way to delay the onset of convection is to
employ active control, through perturbation of the thermal
boundary conditions, to increase the stability threshold
while maintaining a state of no motion in the fluid layer. The
first study concerned with the active control of the Rayleigh-
Bénard system seems to be due to Tang and Bau (1993,
1995). It was demonstrated theoretically by these authors
that a simple control strategy, consisting in perturbing the
lower boundary temperature (Tang and Bau 1993) or heat

flux (Tang and Bau 1995), in proportion to the temperature
at the mid-height of the fluid layer, can significantly retard
the onset of motion. Shadowgraphic visualization of the
convection pattern was used by Howle (1997a, b) to measure
the wave pattern and use it as an input to a backstepping
controller. A nonlinear feedback control strategy has been
proposed by Or et al. (1999) for delaying the onset and
stabilize long wavelength instabilities in the Marangoni-
Bénard convection. The same configuration was studied by
Bau (1999) who demonstrates analytically that, through the
use of feedback control strategies, one can postpone the
onset of motion. The case of a fluid layer subjected to an
internal heating source, and cooled isothermally from above
and below has been investigated by Marimbordes et al.
(2002). Using a control strategy similar to that proposed
by Tang and Bau (1993) it was demonstrated that, by
controlling the heating power, the critical Rayleigh number
for the onset of motion can be increased. Feedback control
of the Marangoni-Bénard convection in a horizontal fluid
layer with internal heat generation has been studied by
Bachok and Arifin (2010). It was found that the critical
Marangoni number decreases with the intensity of the
internal heat generation. Also, with the feedback control,
it was possible to increase the critical Marangoni number.
The effect of control on the onset of thermal convection in a
rectangular loop by changing its spatial orientation has been
investigated by Bratsun et al. (2018). It was demonstrated
theoretically and experimentally that the control method can
successfully stabilize a no-motion state and time-dependent
modes of convection. Recently, a few studies have also
been concerned by the effect of feedback control on the
onset of convection in micropolar fluids (Abidin et al. 2012;
Mokhtar et al. 2012; Khalid et al. 2013; Mokhtar and Khalid
2016) and convection in a nanofluid (Mokhtar et al. 2017a,
b; Khalid et al. 2017). Also, the use of imposed harmonic
vibrations to control convection patterning and intensity in
shallow cavities has been discussed by Lappa (2016).

The present paper investigates the effect of proportional
and derivative controllers on the onset of convection in a
fluid layer with uniform volumetric energy sources. The
earliest study of the effect of non-linear temperature profile
and boundary conditions on the onset of motion in a
horizontal fluid layer is that of Sparrow et al. (1964). An
experimental study was carried out by Tritton and Zarraga
(1967) to investigate qualitatively the convection patterns
produced by the instability of a horizontal layer of fluid with
volumetric heat sources and cooled from above. The same
problem was considered theoretically by Roberts (1967)
and the critical Rayleigh number for the onset of motion
was predicted on the basis of the linear stability theory.
The stability of an infinite layer of fluid which loses heat
throughout its volume at a constant rate has been considered
by Watson (1968). It was found that the critical Rayleigh
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number, for the onset of motion, decreases as the rate of heat
loss increases. Linear and energy theory stability criteria
have been used by Kulacki and Goldstein (1975) for fluid
layers of infinite horizontal extent heated internally by a
uniform volumetric energy source. The thermal coupling
between the layer and its environment was modeled by a
general mixed boundary condition in both the conduction
state and the disturbance temperature. The critical Rayleigh
numbers for the onset of motion were for various boundary
conditions applied on the upper and lower boundaries.

More recently, the effect of internal heat generation on
the onset of Bénard-Marangoni convection in a horizontal
ferrofluid layer heated from below, in the presence
of a vertical magnetic field, has been investigated by
Nanjundappa et al. (2011). It is demonstrated that the
combined effect of magnetic Rayleigh number and internal
heat source is to hasten the onset of motion.

The paper is organized as follows. First, the physical
model and mathematical formulation of the problem is presen-
ted. The linear stability theory is used in order to predict the
critical Rayleigh number for the onset of motion as a function
of controller gains. Then, some relevant details of the compu-
tational method utilized to solve the full governing equa-
tions are presented. Finally, the results from the numerical
computations are discussed and conclusions are drawn.

Formulation of the Problem

The system under investigation is shown schematically in
Fig. 1. A horizontal two-dimensional fluid layer of thickness
L′ is bounded by impermeable walls. A uniform internal
heat generation per unit volume q ′ is applied on the layer
by passing an electric current through a conducting fluid.
The fluid has a constant dynamic viscosity μ and thermal
conductivity k and assumed to be Newtonian and satisfy the
Boussinesq approximation:

ρ = ρr [1 − β(T ′ − T ′
r )] (1)

where ρr is the fluid density at temperature T ′ = T ′
r and β

is the thermal expansion coefficient.

The governing equations are the usual Navier-Sokes
equations and conservation of energy:

∇. �V ′ = 0 (2)

ρr

∂ �V ′
∂t ′

+ρr( �V ′.∇) �V ′ =−∇P ′+μ ∇2 �V ′+ρr [1−β(T ′−T ′
r )] �g
(3)

∂T ′

∂t ′
+ ( �V ′.∇)T ′ = k

ρrCp

∇2T ′ + q̇ ′ (4)

where �V ′(u′, v′) is the velocity vector, P ′ the pressure, �g the
acceleration of gravity and Cp the specific heat of the fluid.

The boundary conditions for the velocity field are the
no slip conditions on the horizontal walls of the system.
Thermally, the layer is maintained at a constant temperature
T ′

r . Thus we have:

u′ = v′ = 0; T ′ = T ′
r at y′ = 0, L′ (5)

The present Rayleigh-Bénard configuration is characterized
by the fact that below a critical heating power the fluid is
motionless and the vertical temperature distribution across
the layer is the conductive one. Above this threshold a
convective motion is generated which will modify the
temperature distribution from its conductive distribution.
The idea is to modulate the heat source q̇ ′ in such a
way to retard the onset of motion. In order to do so, an
array of sensors located at position (x′, y′

s) detects the
deviations of temperature T ′(x′, y′

s) from its conductive
value T ′

cond(x′, y′
s). Then, an array of actuators modulates

the intensity of the heat source q̇ ′(x′) in proportion to
the deviation in the corresponding fluid column, in order
to suppress deviations from the rest state. Once the
disturbances have been annihilated, the local controllers are
turned off.

Thus, in Eq. 4, the specific heating power supplied to the
fluid layer is expressed as:

q̇ ′ = (q̇ ′
E + q̇ ′

A) (6)

where the constant part of q̇ ′ is given by q̇ ′
E = σE′2/ρrCp,

σ is the electric conductivity and E′ the electric field

Fig. 1 Schematic diagram of the
physical model and coordinate
system
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magnitude. The fluctuating part, q̇ ′
A(x′), supplied to the

system by the actuators follows the rule:

q̇ ′
A(x′, t ′)= −G′ [T ′(x′, y′

s , t
′)−T ′

cond(x′, y′
s )]−Gt

∂T ′(x′, y′
s , t

′)
∂t ′

(7)

where G′ and Gt are the proportional and derivative
controllers gain, respectively.

The governing equations are nondimensionalized by
scaling the length with L′, time with L′2/α, velocity
with α/L′, pressure with ρr(α/L′)2 and the proportional
controller coefficient (G′) with α/L′2. Also, we introduce
the dimensionless temperature T = (T ′ − T ′

r )/(q̇
′
EL′2/α).

Using these scales, Eqs. 2–4 can be transformed to the
following dimensionless form:

∂�

∂t
+ u

∂�

∂x
+ v

∂�

∂y
= Pr∇2� − PrRa

∂T

∂x
(8)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T + q̇ (9)

where � = −∇2
 is the vorticity and 
 is the usual
stream function defined as u = ∂
/∂y and v = −∂
/∂x,
such that the mass conservation is satisfied. Pr = υ/α is
the Prandtl number, Ra = gβ ′q̇ ′

EL′5/υα2 is the Rayleigh
number and υ the kinematic viscosity of the fluid.

The nondimensional heat source on the right hand side of
Eq. 9 is given by

q̇(x, t) = 1 − q̇A(x, t) (10)

where:

q̇A(x, t) = G [T (x, ys, t)−Tcond(x, ys)]+Gt

∂T (x, ys, t)

∂t
(11)

Physically, the system cannot be cooled in its volume
such that when q̇A > 1 the source term, Eq. 10, is set equal
to zero.

The nondimensional boundary conditions at the walls of
the layer are:


 = ∂
/∂y = 0 T = 0 at y = 0, 1 (12)

When the fluid is motionless (
cond = 0), an equilibrium
state is possible, provided that the Rayleigh number is
below a critical value. For this situation, in the absence of
a controller (G = Gt = 0), Eqs. 8–9 yield the following
temperature profile for the conductive state:

Tcond = (y − y2)/2 (13)

The above temperature profile is parabolic with the
maximum at the center. Thus, the lower part of the layer
is stable and the upper one unstable (see Fig. 1). This
situation is similar to the case of a layer of cold water in the

neighborhood of 4 ◦C, point at which the density of water
reaches a maximum value (see for instance Mamou et al.
1999).

Linear Stability Analysis

In this section the onset of motion is investigated on the
basis of the linear stability theory. To do so, the stability to
small perturbations from the quiescent state (
cond , Tcond )
is examined now. It is convenient to rewrite the governing
equations using ψ = 
 − 
cond and θ = T − Tcond .
As usual, the perturbed solution is assumed to have the
following functional form:

ψ(t, x, y) = ψ̃(y)ept+iax

θ(t, x, y) = θ̃ (y)ept+iax

}
(14)

where ψ̃(y) and θ̃ (y) describe the vertical perturbation
profiles and p = pr + iω is the complex growth rate of
the perturbation. In the above equation a = 2π/λ is the
real wave number, λ the wavelength, pr the grow rate of
instability and ω the frequency of instability.

Introducing Eq. 14 into Eqs. 8 and 9 and neglecting
second higher-order nonlinear terms yields the following
linear system:

Pr[(D2 − a2)(D2 − a2)ψ̃ − iaRaθ̃] = p(D2 − a2)ψ̃ (15)

(D2−a2)θ̃ + iaψ̃DTcond −Gθ̃(ys) = p[θ̃ +Gt θ̃(ys)] (16)

The boundary conditions, corresponding to Eq. 11 are:

ψ̃ = Dψ̃ = 0; θ̃ = 0 at y = 0, (17)

where D = d/dy.
The perturbed state Eqs. 15–16 with the boundary

conditions (17) may be written in a compact matrix form as:

MA(a)Y = pMB(a)Y (18)

where Y = [ψ̃, θ̃ ] is a two-component vector of
the perturbation and MA(a) and MB(a) are two linear
differential operators that depend on the control parameters
Ra, Pr, ys , G and Gt .

The set of Eqs. 18 is solved using a finite differences
scheme. The system is discretized using a fourth-order
scheme in the domain between y = 0 and y = 1.
For N computational points, the resulting discrete system
has 2N eigenvalues (corresponding to variables ψ̃ and θ̃ ,
respectively) that can be found using a standard IMSL
subroutine such as DGVCCG. The value of Ra for which
the maximal growth rate pr among the 2N eigenvalues
cancels is determined iteratively by Newton’s method (for
details on the procedure see for instance Weerakoon 1996),
holding a, Pr, ys , G and Gt constant.
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Table 1 Comparison between
the present numerical solution
of the linear stability analysis
and the results of Kulacki and
Goldstein (1975)

Present N=100 Present N=150 Present N=200 Kulacki and Goldstein (1975)

Rac ac Rac ac Rac ac Rac ac

37317.76 4.00 37321.90 4.00 37323.34 4.00 37324.80 4.00

The validation of the numerical code has been performed
for the case of an uncontrolled system. The precision of
the value of the critical Rayleigh number and wave number
predicted by the present numerical procedure depends on
the grid number N. Numerical tests, using various mesh size
were done for the same conditions in order to determine
the best compromise between accuracy of the results and
computing time. Typical results are presented in Table 1
which shows that for N≥100 the present study is found
to agree very well with the results reported in the past by
Kulacki and Goldstein (1975). Based on these results, the
value N = 150 was adopted for this study. For the case of a
controlled system the code was compared with the results
obtained in the past by Tang (1996) (Table 2). A good
agreement is also obtained, the maximum deviation been of
the order of 0.6%.

Numerical Solution

The solution of the governing Eqs. 8–11 and boundary
conditions (12) is obtained using a finite difference method
with uniform grid size. The energy equation was solved
using the alternating direction implicit method (ADI). The
stream function field was solved using over relaxation
method (SOR) and know temperature distribution. A first
order backward finite difference scheme is employed to
discretize the temporal terms appearing in the governing
equations. A line-by-line tridiagonal matrix algorithm with
relaxation is used in conjunction with iterations to solve
the nonlinear discretized equations. We consider that
convergence is reached when �

i
�
j
(bnew

ij −bold
ij )/�

i
�
j
bnew
ij ≤

10−6 is satisfied, where b stands for 
, � and T . The
subscripts i and j denote grid locations in the (x, y) plane
while superscripts new and old refer to values evaluated at

Table 2 Validation of the numerical code for a controlled system and
for Pr = 0.7 (r = Rac/1708)

G = 0 G = 2 G = 3

r ac r ac r ac

Tang (1996) 1 3.117 1.66 3.653 2.07 3.877

Present 1 3.116 1.65 3.649 2.06 3.870

time steps t + �t and t , respectively. A further decrease of
the convergence criteria 10−6 does not cause any significant
change in the final results.

Numerical tests, using various mesh sizes, were done
for the same conditions in order to determine the best
compromise between accuracy of the results and computer
time. Typical results in terms of average Nusselt number
are presented in Table 3 for the case Ra = 105, Pr = 7,
G = 0 and A = 10, in which A is the aspect ratio
(length/height) of the rectangular domain considered in the
numerical procedure. Based on this accuracy test, most of
the calculations presented in this paper were performed
using a 40×372 grid.

Table 4 shows a comparison between the prediction of
the linear stability theory and the numerical solution of the
full governing equations for Pr = 7, ys = 0.77 and various
values of G. As discussed above, for an uncontrolled layer
(G = 0), the linear stability theory predicts that the onset of
steady state motion (ωc = 0) occurs at a critical Rayleigh
number Rac = 37323. This result was verified numerically
by considering a unicellular flow confined in a cavity with
free vertical boundaries. First, a result was obtained for a
Rayleigh number slightly above the critical value predicted
by the linear stability theory. Then, the Rayleigh number
was decreased step by step, using the previous results as
initial conditions in the numerical code, until the rest state
was reached. In this way it was found that, Rac = 37500,
which is close (within 0.5%) to the prediction of the linear
stability theory. Similarly, for a controlled layer (G �= 0),
the agreement between the two methods is observed to be
excellent for both steady (ωc = 0) and unsteady (ωc �= 0)
onsets of motion. It is worthwhile to mention that, using a
commercial code, a few numerical results concerning this
problem have been reported by Marimbordes et al. (2002).
However, these authors have not tried to compare these
results with those of their linear stability model for the
controlled system (G �= 0).

Table 3 Accuracy test for Ra = 105, Pr = 7, A = 10 and G = 0

Nodes

20×266 30×266 40×372 50×372

Num 4.775 4.737 4.722 4.714
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Table 4 Comparison between the results of the linear stability theory
and the results of numerical simulation for Pr = 7 and ys = 0.77

Linear stability theory Numerical simulation

G Rac ωc Rac ωc

0 37323 0 37500 0

30 104119 0 104500 0

65 211816 42.9 213000 41.9

90 229296 90.3 230000 89.5

Result and Discussion

The present problem is governed by five parameters, namely
Ra, Pr, G, Gt and ys . Most of the results presented in this
study were obtained for the particular case Pr = 7 such that
the value of the Prandtl number will be specified in the text
only when it is different from this value. First, the results
obtained a proportional controller is discussed. Then, the
effect of a derivative controller is investigated.

Proportional Controller

In the section, the case of the proportional controller
(G �= 0, Gt = 0) is considered. This situation has been
investigated in the past by Marimbordes et al. (2002).
However, the linear stability theory developed by the
authors relies on the assumption that the exchange of
stability can be assumed. This is not always true as it will
be demonstrated here. Also, as discussed above, they only
retained the two first steady modes in the Fourier series
used to analyze the stability of the conductive state. It is
found in the present study that, under certain conditions,
more modes are necessary to obtain accurate results. Using
linear stability analysis and numerical solutions of the full
governing equations it will be demonstrated in this section
that one can postpone (prepone) considerably the transition
from the no-motion conductive state to the motion one
(steady or unsteady). Also, it will be shown that both
the critical Rayleigh numbers for the onset of steady and
unsteady motions depend strongly upon the magnitude of
the heating power G and vertical position of the temperature
sensor ys . The theoretical maximum and minimum critical
Rayleigh numbers possible for the present system are
predicted in terms of both G and ys .

Figure 2a and b depicts the marginal stability curves
obtained numerically, in terms of the critical Rayleigh
number at the onset of motion, Ra, versus the wave number,
a. The results presented in Fig. 2a were obtained for various
values of the controller gain, G, when the temperature
sensors are located at position ys = 0.75. For a given curve,
it is seen that the critical Rayleigh number Ra → ∞ as

Fig. 2 The Rayleigh number Ra at the onset of convection as a
function of the wave number a: a effect of the controller gain G,
ys = 0.75; b effect of the position of the temperature sensors ys ,
G = 90

a → 0. Upon increasing a, the critical Rayleigh number
decreases quickly, reaches a minimum at a given critical
wave number, and then starts to increase again. The global
minimum yields the critical Rayleigh number Rac and the
corresponding critical wave number ac. For an uncontrolled
system (G = 0), it is found that, Rac = 37323 at ac = 4,
in agreement with the numerical results obtained in the
past by Kulacki and Goldstein (1975). A bird eye view on
the graph shows that the feedback control (G > 0) has
a stabilizing effect on the system such that Rac increases
with an increase of G. Also, it is observed that the loss
of stability occurs at larger wave numbers, i.e. shorter
wavelengths. The solid lines in the graph correspond to a
supercritical bifurcation occurring through a real eigenvalue
and exchange of stability. On the other hand, the dashed
lines indicate a Hopf’s bifurcation, for which the onset of
motion is time-dependent and the eigenvalue imaginary.
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For G ≤ 40, the loss of stability occurs through a real
eigenvalue. However for higher values of G the marginal
stability curves exhibit two minima, one corresponding to
a real eigenvalue and the second to an imaginary one.
The critical Rayleigh numbers, corresponding to these two
eigenvalues, are approximately equal for G ≈ 76.3 (not
presented in the graph). For this situation a bistability
phenomenon is observed and the two modes of convection
are possible simultaneously. For higher (lower) values of
G, the minimum corresponding to an Hopf’s (supercritical)
bifurcation becomes the global critical Rayleigh number.
Also presented in the graph is the result obtained for
a negative value of the controller gain, namely G =
−10. A negative value of G implies that the actuators
amplify the deviations of the probe temperature sensors
from their conductive values. As a result, the system is now
destabilized and the onset of motion occurs at a critical
Rayleigh number lower than the value corresponding to
uncontrolled situation. The effect of the position of the
temperature sensors, ys , on the marginal stability curves is
depicted in Fig. 2b for G = 90. The results indicate that
ys has a considerable influence on the onset of convection
through both real and imaginary eigenvalues. This point will
be discussed in details below.

In the case of a classical Rayleigh-Bénard problem, i.e.
an unstable horizontal layer of fluid heated from below and
cooled from above, it has been demonstrated by Tang and
Bau (1995) that the position ys of the temperature sensors
affects the value of the corresponding critical Rayleigh
number Rac, for the onset of motion of the controlled
system. In the present problem we are dealing with a more
complicated system, namely a potentially unstable layer of
fluid topping a stable one (see Fig. 1). It is thus expected
that, depending in which of these two layers the sensors are
positioned, the results will be quite different. This point is
illustrated in Fig. 3a–c which shows the critical Rayleigh
number Rac, wave number ac and frequency ωc, at the
onset of convection, as a function of the vertical position
of the temperature sensors ys for various values of G. Here
also, the solid lines correspond to a bifurcation from the
rest state into a steady flow while the dashed lines represent
bifurcation into a time-periodic flow. In the absence of a
controller (G = 0), the classical situation is recovered for
which Rac = 37323, ac = 4 and ωc = 0. Upon applying
a feedback gain of G = 30 it is seen that, depending upon
the position of the temperature probe ys , the control loop
stabilizes (Rac >37323) or destabilizes (Rac <37323) the
system. In order to understand this behaviour, Fig. 4a–c
shows the set of flow (left) and temperature fields (right)
predicted by the linear stability theory, as they exist at
incipient convection, for G = 30 and ys = 0.77, 0.4 and
0.22 respectively. All these flow and temperature patterns
are represented over one wavelength. According to Fig. 3a,

Fig. 3 The effect of the positions of the temperature sensors ys and
controller gain G on a critical Rayleigh number Rac; b wave number
ac; c frequency ωc

for G = 30, the maximum stabilization of the layer occurs
for ys = 0.77. For this situation it is observed from
Fig. 4a that the induced convection flow pattern consists
in a pair counter rotating cells in the upper part (unstable)
of the layer. This induced convective motion is not limited
to the thickness of the unstable layer (1/2 ≤ y ≤ 1)
but penetrates considerably inside the stable one (0 ≤
y ≤ 1/2). Furthermore, this flow pattern gives rise, trough
viscous forces, to a weak circulation at the bottom of the
layer. The distribution of the stream function deviations
from the rest state, ψ(y) through the center of the upper
clockwise circulation, with respect to the vertical position
y, is depicted for information. The corresponding vertical
distribution of temperature perturbations, θ(y), are also
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Fig. 4 Incipient flow patterns
(left) and temperature
perturbation (right) fields for
G = 30 for various positions of
the temperature sensor: a
ys = 0.77; b ys = 0, 0.4, 1; c
ys = 0.22

illustrated in the graph. It is clear that, in the upper part
of the system, the maximum temperature perturbation θ(y),
occurs at ys = 0.77, position at which the temperature
sensor yields an optimum stabilization of the system. When
the sensor is moved at ys = 0.4, Fig. 3a indicates that the
uncontrolled system is recovered. For this particular value
of ys it is seen from Fig. 4b that the temperature fluctuation
is nil, (θ(ys = 0.44) = 0). Thus, the controller does not
have any effect on the perturbations. Naturally, a similar
behaviour occurs when the sensor is moved to the top or the
bottom of the fluid layer where the temperature fluctuations
are also nil. This explains why, at ys = 0, 0.4 and 1,
the critical Rayleigh number of the uncontrolled classical
situation is recovered. One interesting point illustrated by
Fig. 3a is the fact that when the sensor is moved below
ys = 0.4 the controller now destabilizes the layer such that
convection occurs at Rayleigh numbers below the classical
value Rac = 37323. This behaviour follows from the fact
that in the region 0 ≤ ys ≤ 0.4, at a given value ys , the
temperature fluctuations are colder than his environment,
giving rise to an descendant fluid motion. To maintain
the no-motion state the controller increases slightly the
power input that must be supplied to this fluid column.
Consequently, the temperature fluctuations in the upper part
of the layer ys ≥ 0.4 are promoted. In this way, the
controller enhances the strength of the buoyancy forces in
the unstable part of the fluid layer such that the system is
destabilized earlier. The resulting critical Rayleigh number
of the controlled system is thus now significantly lower
than for the uncontrolled one. It is also seen from Fig. 3a
that the minimum Rayleigh number, namely Rac =28350

occurs at ys = 0.22. This position corresponds, according
to Fig. 4c, to the maximum temperature fluctuation in the
bottom of the layer. Also illustrated in Fig. 3a is the result
obtained for G = −5, i.e. upon changing the sign in front
of the heat source. As expected, for this situation the control
loop stabilizes (destabilizes) the system when ys ≤ 0.38
(ys ≥ 0.38).

Figure 5a–c depicts the critical Rayleigh number, Rac,
wave number ac and frequency ωc, at the onset of motion,
as a function of the control gain G for various values of
ys . When the temperature sensors are positioned at ys =
0.6and 0.7 it is observed that upon increasing G the value
of Rac increases from Rac = 37325 at G = 0 to reach
asymptotically the limit Rac → 2.1 × 105 (5.1 × 105), as
the value G is made sufficiently large. The corresponding
variation of the critical wave number is from ac = 4
to ac → 6.8(8.8). It is noted that the frequency ωc is
identically zero since, for these positions of the temperature
sensors, the loss of stability occurs through exchange of
stability, independently of the value of G. Upon moving
the temperature sensors at the positions ys = 0.75, 0.80
and 0.90, the resulting curves are seen to be quite different.
Thus, for relatively small values of G, the principle of
exchange of stability prevails and the onset of convection
is steady (solid lines). However, the results indicate that
for a higher value of G, which depends upon ys , the loss
of stability occurs into a time dependent motion (dashed
lines). Figure 5b and c indicate that the corresponding
wavenumber decreases while the frequency ωC increases
significantly. As the value of G is increased further, a
limit is reached such that RaC remains constant. The loss
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Fig. 5 Effect of controller’s gainG on a critical Rayleigh numberRac;
b wave number ac; c frequency ωc for ys = 0.6, 0.7, 0.75, 0.8 and 0.9

of stability becomes again steady (excepted for the case
ys = 0.9). It is noted that the evolution of Rac with G has
been investigated by Marimbordes et al. (2002) for four
different values of ys . It was found that, independently of
the value ofG, the position ys = 0.75 was the more effective
place to place the temperature probe. It was explained that
this is probably due to the fact that this position corresponds
to the center of the cellular structures. This is not always
true since the convective cells in the upper part of the layer
can penetrate inside the lower stable layer (see Fig. 4).
Furthermore, as demonstrated here, the optimal position of
the thermal probes relies on the temperature perturbation
profiles predicted by the linear stability analysis. For large
values of G, it has not be possible to reproduce the results
reported by Marimbordes et al. (2002).

The critical Rayleigh number Rac, wave number ac and
frequency ωc, versus the Prandtl number Pr, are displayed in
Fig. 6a for ys = 0.8 and G = 200. For this situation, Fig. 5
indicates that the onset of motion is time dependent. The
results show that there is a minimum value Rac = 2.6×105

at Pr = 4.93, for which ac = 5.66 and ωc = 171.5.
Upon decreasing the Prandtl number below this value it is
seen that the critical Rayleigh number first increases sharply
to reach asymptotically the value Rac = 6.7 × 105. The
wavelength is also observed to increase until it reaches a
plateau while the frequency decreases monotonously. This
behavior is due to the fact that a decrease of the Prandlt
number corresponds to an increase of the thermal diffusivity
α. As a result, the thermal perturbations responsible for the
destabilization of the base temperature profile are dissipated
faster as α(Pr) increases (decreases). For information,
the critical perturbations for the stream function ψ and
temperature θ fields, are presented in Fig. 6c and d for
Prandtl numbers of Pr = 10−3, 4.94 and 103, respectively.

Fig. 6 a Effect of Prandtl number Pr on critical Rayleigh number Rac,
wavenumber ac and frequency ωc for G = 200 and ys = 0.8. Critical
perturbations solutions ψ and θ at b Pr = 10−3, c Pr = 4.94 and d
Pr = 103, respectively
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Figure 7a shows the maximum (minimum) values of
the normalized critical Rayleigh numbers rmax(rmin), as
function of the controllers gain G. The parameter r is
defined as the ratio between the critical Rayleigh number
Rac of the controlled layer and that of the uncontrolled one
(Rac = 37323). The graph indicates that for approximately
G ≤ 1 the actuators are inoperative such that rmax =
rmin ≈ 1. As the value of the controller gain is made larger,
1 ≤ G ≤ 102 , it is seen that rmax increases sharply up to
rmax ≈ 9, while rmin decreases down to rmin ≈ 0.60. The
positions of the thermal sensors ys max (ys min), required to
stabilize (destabilize) in such a way the system are depicted
in Fig. 7b.

Figure 8 illustrates the maximum (minimum) value of
the stream function,
max(
min), predicted by the numerical
solution of the full governing equations, as a function of

Fig. 7 Effect of the proportional gain of control G; a position of the
temperature sensors ysopt (ys min) for a maximum (minimum) critical
Rayleigh number Rac; b reduced critical Rayleigh number r

Fig. 8 Time evolution of 
max and 
min for ys = 0.77; a Ra =
1.05 × 105, G = 30; b Ra = 2.17 × 105, G = 65

time t for ys = 0.77. For a control gain G = 30 and
Ra = 1.05 × 105, i.e. slightly above the critical Rayleigh
number Rac = 1.04 × 105 predicted by the linear stability
theory (Table 4), Fig. 8a indicates that the system remains
stable up to t ≈ 21.3. Above this value a steady flow
pattern, consisting of two superposed counterrotating cells,
occurs. This situation persists up to t = 24, at which the
intensity of the controller gain is increased up to G = 40.
Almost instantaneously, the controller suppresses the fully
established motion and the rest state is restored (see the
isotherm patterns at t = 24 and 26, respectively). Figure 8b
shows similar results obtained for G = 65 and Ra = 2.17×
105, for which according to Table 4 a Hopf’s bifurcation
occurs at the onset of motion (Rac = 2.12 × 105). The
numerical results indicate that this is indeed the case since,
above approximately t ≈ 15.7, a permanently oscillating
flow regime is observed. However, at time t ≈ 21.5, the
results show that the system bifurcates toward a steady bi-
cellular flow pattern. At time t = 24, upon increasing
the magnitude of the controller gain up to G = 90 the
convective motion is inhibited and quickly reaches a steady
state, after a short oscillating regime.
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Derivative Controller

In this section the effect of applying both proportional and
derivative controllers (G �= 0, Gt �= 0), on the onset of
motion of the system, is investigated. Based on the linear
stability theory it will be shown that, upon keeping constant
the proportional controller, the use of a derivative strategy
postpones the onset of motion of the system. Here again the
critical Rayleigh number depends upon the heating power
Gt and vertical position of the temperature sensor ys . Also,
numerical solutions of the full governing equations illustrate
the fact that upon applying a derivative controller gain on an
initially periodically oscillating flow regime the rest state is
restored.

Figure 9 depicts the influence of the differential
controller’s gain Gt on the marginal stability curve, namely
the Rayleigh number Ra versus the wave number a at the
onset of motion, for G = 100 and ys = 0.75. Here again the
solid lines correspond to steady flows (exchange of stability)
and dashed one to oscillating flows (Hopf ’s bifurcation). In
the absence of a differential controller (Gt = 0) the loss
of stability occurs into a time dependent motion, as also
indicated by Fig. 5. The critical Rayleigh number for this
situation is given by Rac = 2.6×105 and the corresponding
wave number is ac = 5.8. Upon increasing the value of Gt

it is observed that both the convection threshold Rac and
wave number ac are promoted. However, as can be seen
by the graph in the small window included in Fig. 9, for
Gt ≈ 0.24 the value of the critical Rayleigh number reaches
a constant value Rac = 3.3 × 105. Naturally, there is no
point to increase the value of the differential controller’s

Fig. 9 The Rayleigh number Ra at the onset of convection as a
function of the wave number, a and differential controller’s gain Gt

for G = 100 and ys = 0.75

gain above this value of Gt since no further increases in the
critical Rayleigh number is possible.

The effect of the position of the temperature sensors ys

and controller’s gain Gt on the critical Rayleigh number
Rac is illustrated in Fig. 10 for G = 400. When the strength
of the differential controller is sufficiently weak, according
to the linear stability theory, the onset of motion occurs into
an oscillatory motion for all the values of ys considered
here. For ys = 0.75 it is seen that, upon increasing the value
of the differential controller up to Gt ≈ 0.6, the critical
Rayleigh number increases from Rac = 4.2 × 105 to a
maximum value Rac = 8.1×105 at which the flow is stable
as indicated by the horizontal solid line. Here again, there is
no point to increase the value of the differential controller
higher than Gt ≈ 0.6 since no gain in the critical Rayleigh
number can be obtained. The results obtained for ys = 0.76
are similar, excepted that upon increasing the value of Gt ,
it is observed that the horizontal plateau corresponding to
a steady flow is maintained only up to Gt ≈ 22.5. Above
this value, the flow becomes oscillatory again and the value
of Rac decreases slightly. Finally, when ys = 0.8 the
onset of motion occurs always through Hopf’s bifurcations,
independently of the value of Gt . Also depicted in the graph
is the evolution of Ra versus a for ys = 0.8 and Gt = 3.

Figure 11a shows the evolution of the maximum
(minimum) value of the stream function, 
max(
min) ,
predicted by the numerical solution of the full governing
equations, as a function of time t for G = 100 and ys =
0.75. For this situation, according to the linear stability
theory, it is found that Rac = 256306, ac = 5.79 and ωc =
94.3 for Gt = 0. The numerical results presented here were

Fig. 10 The effect of the position ys of the temperature sensors and
differential controller’s gain Gt on the critical Rayleigh number Rac

for G = 400
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Fig. 11 a Time evolution of 
max and 
min for Ra = 3 × 105,
ys = 0.75, G = 100, and Gt = 0, 0.1 and 1; b time history flow
patterns obtained numerically for Gt = 0 at given values of time t

during one cycle; c flow pattern predicted by the linear stability theory
at time t = 0

obtained by considering a rectangular domain of aspect ratio
(length / height) A = 10.9. This value corresponds to ten
times the wave number predicted by the linear stability in
the absence of controller gain, i.e. for Gt = 0. Thus, upon
starting the numerical results with the rest state and pure
conduction as initial conditions, it is seen that the flow is
unsteady, as predicted by the linear stability theory. It is
observed that, above approximately t ≥ 2.2, a periodically
oscillating flow regime is reached. The flow patterns (1)-
(4) obtained numerically at various time t during a cycle is
illustrated in Fig. 11b. The results indicate that the flow, at
time (1), is bicellular with a large counterclockwise cell in
the center of the computing domain. As the time is increased
the flow pattern starts to restructure, such that at time (4) a
large clockwise circulating cell occupies now the center of
the computing domain. The flow pattern predicted by the
linear stability theory is presented in Fig. 11c and is seen
to be qualitatively in good agreement with the numerical
predictions of the full governing equations. The effect of
the combined action of the proportional and derivative
controllers is illustrated in Fig. 11a. At time t = 3, upon
applying a relatively small controller’s gain Gt = 0.1, the

numerical solution shows that the flow patterns remains
oscillatory even though if the strength of the convective flow
is reduced. However, upon increasing the controller’ gain up
to Gt = 1, the results indicate that the rest state is restored.

Conclusion

In this paper we have investigated the effect of a controller
to postpone (or advance) the onset of motion in a horizontal
fluid layer confined between two isothermal plates and
subjected to internal heat generation. The present problem
is characterized by a vertical parabolic temperature profile
such that the upper half of the fluid layer is unstable while
the lower one is stable. The governing parameters of the
problem are the Rayleigh number, Ra, Prandtl number, Pr,
position of the temperature sensors, ys , the proportional
controller’s gain, G and the derivative controller’s gain, Gt .
The linear stability theory is used to predict the instability
threshold for the controlled system. A numerical study of
convective motion in the fluid layer is also performed, using
a finite differences method. The main findings of the present
study can be summarized as follows:

1◦ Based on the linear stability theory it has been
demonstrated that, for the system considered here,
the onset of Rayleigh-Bénard convection can be
significantly affected by a proportional controller.

2◦ The position of the temperature sensors has been
found to be important. Thus, within the unstable layer,
there is an optimal position ys max at which the loss
of stability occurs at significantly higher Rayleigh
numbers (rmax ≈ 9) than in the uncontrolled case.
However, within the stable layer, the effect of the
temperature sensors is to advance the onset of motion.
The advance in the onset of motion is maximum
(rmin ≈ 0.60) at a given position ys min .

3◦ The linear stability theory indicates that, depending on
the controlling parameters of the problem, the onset of
motion is not always steady but can be time-dependent
(Hopf’s bifurcation). This type of convection can be
suppressed with a derivative controller.

The results of the linear stability theory have been
confirmed by a numerical solution of the full governing
equations.
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